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For linear combinations of Bernstein operators B, ,(f, x), we give an equivalent
theorem with wfﬁ( £, t), where w '(f, t) is the Ditzian—-Totik modulus of smoothness
(1—=1/r<A<1). It is the generdllzdtlon of corresponding results by Z. Ditzian
and V. Totik (1987, “Moduli of Smoothness”, Springer-Verlag, Berlin/New York).
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1. INTRODUCTION

The Bernstein operator is defined by

Bf0= 3 A5 ) st pastn=() -t )

The combinations of Bernstein operators introduced in [1] (see also [2]
and [4]) are given by

fox) = i ) B, (f: %). (12)
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where C; and n; satisfy

(a) I’l=n0<n1<'~<nr I\Kl’l

r—1
(b) > IG(n)|<C
= (1.3)

We recall [2, p. 10] that

Wy f, 1) = sup sup |40 S (X)] (14)

0<h<t x+(r/2) h¢Xx)e[0,1]
defined is equivalent to the K-functional [2, p. 10]

Ky (f,1)= inf  ([f=glcro17+1" g g™ cro, 17)- (1.5)
gr-Ded.c

+~loc

That is there exists a constant C such that
C™ Ky (o ) SOl f 1) < CRyi (fo 1), (16)

which we denote (as usual) by @y f, 1) ~ Ky (f, ).
In [4] we got

THEOREM A. For feC[0,1], O<a<r, 0<A<I, ¢*(x)=x(1—x),
3,(x) =(x)+n""2, we have

B, (f. x) = f(x) = O((n~123,~%(x))") = 0l f: 1) = O(t*).  (L.7)

For this result, Ditzian pointed out that (see MR 99a 41028) one should
note that for A=1 the known results are substantially better, comparing
B, (f, x) — f(x) with @} 4 (f 1) rather than with w}(f, ¢) (see [2, Chap. 9]),
but this difference is mherent in the problem. For 4=0 replacing wy(f, t)
with w “(f, t) in (1.7) is impossible (see [1]). Naturally we ask for which
A we can replace wl(f, 1) with w3i(f, 1), for which 2 we can not? The
answer is given in our main result below

THEOREM 1. For feC[0,1], reN, 0<a<2r, 1 —1<i<1, we have

r

B, (f. x) = f(x)=O((n7"?¢' =4 (x))") = 0§ f. 1) = O(t*).  (1.8)

For 0<A<1—1/r, (1.8) is not true.
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Remark 1. We also improve Theorem A by replacing J,(x) with ¢(x).
Throughout this paper C denotes a constant independent of n and x. It
is not necessarily the same at each occurrence.

2. DIRECT RESULTS WHEN 1—-1</<1

In this section we will give direct results when 1 —1< 1< 1. And in the
next section we will prove the case of A=1—1/r.

Lemma 2.1. For f(x)e C[0,1], r=2, f®~Y(x)e A.Cloc, when 1 —1/r
<i<l,m=12,.,r—lorm=12,.,r—=2, 1 —1/r<i<1, we have

H¢2rﬂ—2mf(2r7m)“ <C(|fIl+ H¢2r/1f(2r)” ), (2.1)

where the norm ||-|| := |- .

Proof. First we observe that (see [2, p. 136])

| =) < C( 1/ 1/, 347 + ‘|f(2r)“[1/4, 3/47)

S+ 119> 7). (22)
For 1-1/r<i<l, m=1,2,..,r—1or 1—-1/r<i<1, m=1,2,.,r—2,
when x is near to 0(x <1/2), we have

‘f(Zrm)(x) _f(2r7m) <;>‘

1/2
<J |f(2r—m+l)(u)| du

X

1/2 dl/l
A— _
< Hur m+lf(2r m+1)(u)H[0’ 12 J 7ur/1—m+l
X

< C ”xri—m+ 1f(2r—m+ 1)(x)H [0, 1/2] x—(rl—m)
which implies
er/l_mfar—m)(x)ﬂ[o, 1/2]
S CI LI+ 1922 @0 4 [ =m U Cr=mED(x) [ o, 1/29)-
When x is near to 1 (1/2<x<1), we can use similar treatment and obtain

19274 2m(x) £ =m(x)|
S CUSI+ 1> @0 + (g2 =27+ 2(x) £ D)), (23)
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For m=1 the inequality (2.1) is valid by the inequality (2.3). From these,
the inequality (2.1) follows by induction.

LemMA 2.2. For f(x)e C[0,1], f@—D(x

ye A.Cloc, when r=2, 1 —1/r
<A<l,orr=1,0<A<1 we have

¢2r(l /1)( )
1B, (f. x) = f(x)] < pr L1+ g2 ). (2.4)

Proof. When r=2, 1 —1/r<i<1, we discuss the inequality (2.4) by
two cases.

Case 1. xeE,=[1/n,1—1/n].
Using the Taylor expansion and [2, p. 134 (9.5.5)]

B, ((t—x),x)=0, j=1,2,..,r (2.5)
we can write that
r—1 1 . .
B A1) =f(0)= B o Bl (1 =00 ) 1)

X

1 ! 2r—1 2r
+(2},,_1)!Bn,r<f (t_u) f( )(u)du,x>

=1, +1,. (2.6)

We estimate 7, first. By [2] (see p. 134 (9.5.3)) and the inequality (2.1), for
x e E, one has

|B,,, ((t—x)>"7, x) [ 7(x)|
¢2r(1 71)(x)

2T () £ ()
n

2r(1 — 2)
<P g,

<C

Hence

2r(1—2)
i< g4 g, 1)

Now we estimate I,. From B,((t —x)%, x) < Cn~"¢¥(x), (xe E,) and

|t—u|2’_1 |l—X|2r_l

< 2.8
¢2rl(u) < ¢2rﬂ(x) ( )




APPROXIMATION BY BERNSTEIN OPERATORS 113

for u is between x and ¢ (see [2, p. 128], [2, p. 141]), we have

B ([ (1= 1) i

P

Z|c =) 5, (1 P )

¢2r/1( )
2(1—2)
<t geageny, (29)

So

¢2"(1 A)( ) 2rig(2r)
|12|<C7H¢ 771 (2.10)

Case 2. xeE{=[0,1/n)u(l1—1/n,1].
First we write

1
SO =f(x)+(1=x) f'(x)+ - +ﬁf(’)(X)(t—X)’

+i, Jt(t—u)’f(’“)(u) du.
r!

From the inequality (2.8) and Lemma 2.1 we get for 1 —1/r<i<1
|Bn,r(.f’ x) 7f(x)|

, X)

r—1
<P D) @22 OO D S Cyn)] By ([0 — x|
i=0

S CPAA2)L I+ 14277 201D i |Cs(n)| By, (It =x]"*", x).

By [2, (9.5.10)], for xe E¢, we have B,(|t —x|*, x) < C‘f;ff.), therefore

Byli—xI7*1, ) < (By((1 = x)7, ) Byl(1 —x)2 x))“2<C¢ x)
Hence for x € E¢, we have
¢2r(l A)( )
B, 0~ fol < g, @

From (2.6), (2.7), (2.10) and (2.11), (2.4) follows.
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When r=1, 0<i<1,

B fox) =00l = | B, [ 10 770 x

P

2(1—2)
" — (0 (X) "
<|[l@*f"[l 9 ~*4(x) B,((1—x)?, X)=7n lo>*f" .

Lemma 2.2 is proved.

THEOREM 2. For feC[0,1], 1 =1/r<i<l(r=2), or 0<i<1 (r=1)
then

2r(1—2) 1—2
B o) = fil < € (= 7 o (1 ﬁ”)) (212)

n
Proof. By (1.6), we may choose g, =g, ., for a fixed x and A such that
1f = gull + (n 71241 =4x))> 19> 27 | < Cofil fin™ 1291 ~H(x)). (2.13)

From the definition of the B, , and Lemma 2.2, we have

1By, (/. x) = f(x)]
SCf—=gall+ 1By, (8n> X) — g(X)]

< C<|f— el + 2 ey oz <f, d’li(x)))

r

n

< C(M 11+ <f, "51;;‘))).

n
Remark 2. [2, (9.3.1)] is the special case of (2.12) for A=1.

Remark 3. For 0<A<1—1/r, (2.12) is not true.
For f(x)=x""1, let x=1/n. Then

o3 (1 “57;)) #ET L (B

In the case of r=2j (j=1,2, ..), using [2, (9.5.11)], we have
By, (%) = f(x) = B, ((1—x) ", x)

Uy, ~<1>2f+{

=Y St P~
+m+1 T m
moo " n
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In the case of r=2j—1, using [2, (9.5.10)], similarly we have

B, (f. %)~ ()~ (1>2j.

n

So for 0<A<1—1/r, (2.12) is not valid and in (1.8) the relation “ <" is
not true.

3. DIRECT THEOREM WHEN A=1-—1/r

LEMMA 3.1. Let 0 <o <2r, Ifa) “f, 1) =0(t*), A=1—1/r, then
C()r+1(f, t) — O(sz(l—l/z))’ (31)

where " " Y(f. t) is the classical modulus of smoothness.

Proof. By the following relation (see (3.1.5) of [2])
o' (f, VD) K My f 1),
we can deduce
f 1) f (11 1/2)1/(1 /1/2)) <Mw2r f - 1/2) < Cr1—=4/2)

And because of O<a<2r, O0<oa(l—41/2)<r+1, then using above
inequality and the following relation (see (4.3.1) of [2])

wifn<er ([ 0 i),

where ¢ is a positive constant, we can obtain
C()r+1(f; [) < Ctzx(l—l/z).

Lemma 3.2. For f(x)e C[0,1], f®~Y(x)eA.Cloc, r =2, when xeE,,
A=1—1/r, we have

|B,, (/. X) = [(X)| < Cor ' (f, (n "¢ = D(x)) VD)
+ Cn 7r¢2r(171)(x)(“f” + H¢2rlf(2r)”). (3.2)

Proof. Let

(Sgn Rn,r+l( ))A +1(x)|l/(r+1)f )

—1
Tn,r+l(f’ X):(V+ 1)'
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Vzhgre Rn,r+1(x) = Bn, r((l_x)r+ls X), ZT)}f‘(x) Ef(x+ Z) _f(x)s ZTltcf‘(x) =
A(A%~! f(x)). By simple calculation we know

0, j<r+1,
Tn,r+1((t_x)j9 x): _Rn,r+1(x)’ j:r+1=
C'|Rn,r+l(x)|j/(r+l) (Sgn Rn,r+1(x))7 j>r+l,

J

where ¢; is a constant that depends on j but not on n and x.
On the other hand, when xe E,, we have

|Rn,r+ (X)) < Cn7r¢2(x) = Cnfr¢2r(17/1)(x)’
| T, r 1 (s X) < CCO"H(f, (n—’¢2r(1—l)(x))l/(r+1)),

and
1T, (2= 2)% )] = e |- IRy 1 () D < ™7 g%(x)) 70+ D
< Cn="2U="(x) prd—ilr+ D)2l —jfr+ D) x)
< Cn—"$*U="(x), (j>r+1). (3.3)
Now we define a new operator 4,(f, x)=T, ,,,(f, x)+ B, (f, x), then
A,((t—x), x)=0, j=1,2,.,rr+1.

Similar to Lemma 2.2 we write that

A1 %) — f(x)] < i (2r1_ 5 Bl =07 ) £ )
+ (2;’1—1)' B, <£: (1—u)> =" fOu) du, x>
r—2 1 - o
+ j; an,r+l((t_x) X)) f (x)
+ (2;,,1_1)' Tn,r+1 <J: (l_u)Zr—l f(zr)(u) du, x>

=J + T+ T3+ Ty,

(when r=2, J, =0, J;=0).
By the procedure of the proof of Lemma 2.2 we know that

Ji+ T < Cn "D 11+ 1927 2.
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Using (3.3), on a similar plan of (2.7) we can get
T3 < Cn == 1+ 192727,

Now we estimate J,. We know

-1 .
|Tn,r+1(f’ X)| =(r+ 1)| |AT;_,,,I,H(X)W('H)'f(x”
-1 r+1 . r+1
S (r+1)! ,,EO(_I) ( m >

< fx+(r+1=m) R, (x)]""+D)

b}

SO
r+1 V+1
J, <
<3 ()

X (X A+ (r+L=m) R, , ()Y —u)? =1 £ (u)| du.

Jx+ (r+1=m)|R, , 1 (x)|/r+D

X

Then similar to the proof (2.9), we can deduce by (2.8) and (3.3)
Jo < Cn= g =)/ + 19277 201D
Therefore
|A,(fs %) = F()| < Cn = =R f 1+ 1270,
Thus we obtain
1By, (fs x) = S < [Au(f, X) = f(O) + [T 11(f, X))
< Co™ (£ (17 ¢(x) 1Y)
+ Cn AL+ 14277 201D

Lemma 3.2 has been proved.
Similar to the proof of Theorem 2, we can obtain the following theorem.

THEOREM 3. Let fe C[0, 1], when xe E,, A=1—1/r, we have
1B, (f, x) = f(x)]

< er+1(f; (n—r¢2r(l—ﬂ)(x))l/(r+1))

2r(1—=2)
+c<"’(x)f|+wﬁa<f,n“2¢”(x)>>- (34)

nr
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To discuss the case of xeE;, we define for #>0 the Steklov-type
averages

1\ phr+d hir+1
fh(x)_< ; > fo L

r+1
AT (T IR k) i
k=1

We know f,(x) has r+1 continuous derivatives. And when [x, x+
(r+1)h]<[0, 1], by calculation we have
/(%) = fu(x)| < Co" 1, h),
|f(r+l)( |<Ch—(r+1)wr+1 fh
Then we choose a function yy € C* such that y(x)=1on [0, 1/3], y(x)=0
on [2/3, 1] and y(x) is decreasing. Let F,,(x) = fi(x) Y(x) + f_,(1 —y(x)),
where f_, is the same as f}, but using —# instead of 4. Using the standard
technique of [3, p. 106], we can deduce for xe [0, 1]
|f(x) = Fy(x)| < C™™ (£, ), (3.5)
[F+O(x)| < Ch= "D T f, h). (3.6)

Therefore similar to the case 2 of Lemma 2.2 we also have for xe E
by (3.6)

By )= 0 = | By, ([ 00 P90 dix

r!

r—1
SCh="* Vo™ (fh) Y |Cin)| B, (It—x|"+, x)
i=0

< Ch=+ Ve (£ 1) n~"p¥(x). (3.7)

Now we give the direct theorem:

THEOREM 4. Let feC[0,1], when x€[0,1], A=1—1/r, 0<a<2r, if
a)ﬁ’l(f, t)= O(t*), then we have

|B,, (/. x) = f(x)| = O((n~ 129" ~4(x))") = O(n=*2¢*"(x)). ~ (3.8)

Proof. We will prove (3.8) by two cases.
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Case 1. When xe€ E,, using Lemma 3.1 and Theorem 3 we obtain
|B,,, (f, x)— f(x)]
< Ca™ ([, (n77¢2(x) VD) + Cwfil fon 1241~ H(x))
< C(n—r¢2(x))(oc/(r+ 1)(1 —4/2) + C(n_l/2¢l —A(x))oc
< Cln 1241 A"

Case 2. When xe E¢, using (3.5), (3.7) and Lemma 3.1, and choosing
h=(n""¢*(x))""*! we have

|B,,, (f, x) = f(x)]
<IB, (f = Fp X)| + 1/(x) = Fy(x)| + B, (F), x) — F)(x)]
< er+l(f, h) + Ch*(r+l)wr+1(f’ /’l) nfr Z(X)
< Chr =2 4 cp —(r+1)n—r¢2(x) pe1—4/2)
< Cln 1291~ H(x)"
Theorem 4 has been proved.

Remark 4. 1In fact by this method we can also deal with the case of
1—1/r<A<1 in Theorem 1. But we cannot obtain Theorem 2 (a better
direct theorem).

4. INVERSE RESULTS

THEOREM 5. For feC[0,1],reN, O0<a<2r, 0<A<]1, if
|B,,, (fs x) = f()] < C((n~ "¢ ~*(x))%), (4.1)
then
wi’;.(f, t)= O(t%). (4.2)

Proof. From the procedure of proof in [4, Theorem 2], we can deduce
that for 0 <a < 2r

B, (f. %)= f(x)| = O((n~ 26,7 4(x))") = w3i( f. ) = O(t*).  (4.3)

Since (4.1) implies the left of (4.3), (4.2) follows.

Remark 5. Obviously, by Theorems 2, 4 and 5, noting Remark 3 we
know that Theorem 1 is true.
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