

Pointwise Approximation for Linear Combinations of Bernstein Operators¹

Shunsheng Guo

Department of Mathematics, Hebei Normal University, Shijiazhuang 050016, P. R. China E-mail: zlx6826@sj-user.he.cninfo.net

Cuixiang Li and Xiwu Liu

Department of Mathematics, Sichuan University, Chengdu 610064, P. R. China

and

Zhanjie Song

Department of Mathematics, Hebei Normal University, Shijiazhuang 050016, P. R. China Communicated by Zeev Ditzian

> Received June 29, 1999; accepted in revised form June 2, 2000; published online October 11, 2000

For linear combinations of Bernstein operators $B_{n,r}(f,x)$, we give an equivalent theorem with $\omega_{\phi^{i}}^{2r}(f,t)$, where $\omega_{\phi^{i}}^{2r}(f,t)$ is the Ditzian-Totik modulus of smoothness $(1-1/r \le \lambda \le 1)$. It is the generalization of corresponding results by Z. Ditzian and V. Totik (1987, "Moduli of Smoothness", Springer-Verlag, Berlin/New York). © 2000 Academic Press

Key Words: moduli of smoothness; linear combinations; Bernstein operators.

1. INTRODUCTION

The Bernstein operator is defined by

$$B_n(f,x) = \sum_{k=0}^{n} f\left(\frac{k}{n}\right) p_{n,k}(x), \qquad p_{n,k}(x) = \binom{n}{k} x^k (1-x)^{n-k}. \quad (1.1)$$

The combinations of Bernstein operators introduced in [1] (see also [2] and [4]) are given by

$$B_{n,r}(f,x) = \sum_{i=0}^{r-1} C_i(n) B_{n_i}(f,x), \qquad (1.2)$$

¹ Supported by NSF of Hebei Province.

where C_i and n_i satisfy

(a)
$$n = n_0 < n_1 < \cdots < n_{r-1} \le Kn$$
;

(b)
$$\sum_{i=0}^{r-1} |C_i(n)| \le C;$$
(c)
$$\sum_{i=0}^{r-1} C_i(n) = 1;$$
(1.3)

(d)
$$\sum_{i=0}^{r-1} C_i(n) n_i^{-\rho} = 0, \qquad \rho = 1, 2, ..., r-1.$$

We recall [2, p. 10] that

$$\omega_{\phi^{i}}^{r}(f, t) = \sup_{0 < h \leq t} \sup_{x \pm (r/2)} \sup_{h\phi^{i}(x) \in [0, 1]} |\Delta_{h\phi^{i}(x)}^{r}f(x)|$$
 (1.4)

defined is equivalent to the K-functional [2, p. 10]

$$K_{\phi^{\lambda}, r}(f, t^{r}) = \inf_{g^{(r-1)} \in A, C_{loc}} (\|f - g\|_{C[0, 1]} + t^{r} \|\phi^{r\lambda}g^{(r)}\|_{C[0, 1]}).$$
 (1.5)

That is there exists a constant C such that

$$C^{-1}K_{\phi^{\lambda},r}(f,t^r) \leqslant \omega^{r}_{\phi^{\lambda}}(f,t) \leqslant CK_{\phi^{\lambda},r}(f,t^r), \tag{1.6}$$

which we denote (as usual) by $\omega_{\phi^{\lambda}}^{r}(f, t) \sim K_{\phi^{\lambda}, r}(f, t^{r})$.

In [4] we got

Theorem A. For $f \in C[0, 1]$, $0 < \alpha < r$, $0 \le \lambda \le 1$, $\phi^2(x) = x(1-x)$, $\delta_n(x) = \phi(x) + n^{-1/2}$, we have

$$B_{n,r}(f,x) - f(x) = O((n^{-1/2}\delta_n^{1-\lambda}(x))^{\alpha}) \Leftrightarrow \omega_{\phi^{\lambda}}^r(f,t) = O(t^{\alpha}). \tag{1.7}$$

For this result, Ditzian pointed out that (see MR 99a 41028) one should note that for $\lambda=1$ the known results are substantially better, comparing $B_{n,r}(f,x)-f(x)$ with $\omega_{\phi}^{2r}(f,t)$ rather than with $\omega_{\phi}^{r}(f,t)$ (see [2, Chap. 9]), but this difference is inherent in the problem. For $\lambda=0$ replacing $\omega_{\phi\lambda}^{r}(f,t)$ with $\omega_{\phi\lambda}^{2r}(f,t)$ in (1.7) is impossible (see [1]). Naturally we ask for which λ we can replace $\omega_{\phi\lambda}^{r}(f,t)$ with $\omega_{\phi\lambda}^{2r}(f,t)$, for which λ we can not? The answer is given in our main result below.

THEOREM 1. For $f \in C[0, 1]$, $r \in \mathbb{N}$, $0 < \alpha < 2r$, $1 - \frac{1}{r} \le \lambda \le 1$, we have

$$B_{n,\,r}(f,\,x)-f(x)=O((n^{-1/2}\phi^{1-\lambda}(x))^{\alpha})\Leftrightarrow \omega_{\phi^{\lambda}}^{2r}(f,\,t)=O(t^{\alpha}). \eqno(1.8)$$

For $0 \le \lambda < 1 - 1/r$, (1.8) is not true.

Remark 1. We also improve Theorem A by replacing $\delta_n(x)$ with $\phi(x)$. Throughout this paper C denotes a constant independent of n and x. It is not necessarily the same at each occurrence.

2. DIRECT RESULTS WHEN $1 - \frac{1}{r} < \lambda \le 1$

In this section we will give direct results when $1 - \frac{1}{r} < \lambda \le 1$. And in the next section we will prove the case of $\lambda = 1 - 1/r$.

LEMMA 2.1. For $f(x) \in C[0, 1]$, $r \ge 2$, $f^{(2r-1)}(x) \in A.C.loc$, when $1 - 1/r < \lambda \le 1$, m = 1, 2, ..., r - 1 or $m = 1, 2, ..., r - 2, 1 - 1/r \le \lambda \le 1$, we have

$$\|\phi^{2r\lambda-2m}f^{(2r-m)}\| \leqslant C(\|f\| + \|\phi^{2r\lambda}f^{(2r)}\|), \tag{2.1}$$

where the norm $\|\cdot\| := \|\cdot\|_{L_{\infty}}$.

Proof. First we observe that (see [2, p. 136])

$$|f^{(2r-m)}(\frac{1}{2})| \le C(||f||_{[1/4, 3/4]} + ||f^{(2r)}||_{[1/4, 3/4]})$$

$$\le C(||f|| + ||\phi^{2r\lambda}f^{(2r)}||). \tag{2.2}$$

For $1 - 1/r < \lambda \le 1$, m = 1, 2, ..., r - 1 or $1 - 1/r \le \lambda \le 1$, m = 1, 2, ..., r - 2, when x is near to $0(x \le 1/2)$, we have

$$\begin{split} \left| f^{(2r-m)}(x) - f^{(2r-m)} \left(\frac{1}{2} \right) \right| \\ & \leq \int_{x}^{1/2} |f^{(2r-m+1)}(u)| \ du \\ & \leq \|u^{r\lambda - m + 1} f^{(2r - m + 1)}(u)\|_{[0, 1/2]} \cdot \int_{x}^{1/2} \frac{du}{u^{r\lambda - m + 1}} \\ & \leq C \|x^{r\lambda - m + 1} f^{(2r - m + 1)}(x)\|_{[0, 1/2]} x^{-(r\lambda - m)} \end{split}$$

which implies

$$||x^{r\lambda-m}f^{(2r-m)}(x)||_{[0,1/2]} \le C(||f|| + ||\phi^{2r\lambda}f^{(2r)}|| + ||x^{r\lambda-m+1}f^{(2r-m+1)}(x)||_{[0,1/2]}).$$

When x is near to 1 $(1/2 \le x \le 1)$, we can use similar treatment and obtain

$$\|\phi^{2r\lambda-2m}(x) f^{(2r-m)}(x)\|$$

$$\leq C(\|f\| + \|\phi^{2r\lambda}f^{(2r)}\| + \|\phi^{2r\lambda-2m+2}(x) f^{(2r-m+1)}(x)\|). \tag{2.3}$$

For m = 1 the inequality (2.1) is valid by the inequality (2.3). From these, the inequality (2.1) follows by induction.

LEMMA 2.2. For $f(x) \in C[0, 1]$, $f^{(2r-1)}(x) \in A.C.loc$, when $r \ge 2$, $1 - 1/r < \lambda \le 1$, or r = 1, $0 \le \lambda \le 1$ we have

$$|B_{n,r}(f,x) - f(x)| \le C \frac{\phi^{2r(1-\lambda)}(x)}{n^r} (\|f\| + \|\phi^{2r\lambda}f^{(2r)}\|). \tag{2.4}$$

Proof. When $r \ge 2$, $1 - 1/r < \lambda \le 1$, we discuss the inequality (2.4) by two cases.

Case 1. $x \in E_n = [1/n, 1-1/n]$.

Using the Taylor expansion and [2, p. 134 (9.5.5)]

$$B_{n,r}((t-x)^j, x) = 0, j = 1, 2, ..., r$$
 (2.5)

we can write that

$$B_{n,r}(f,x) - f(x) = \sum_{j=1}^{r-1} \frac{1}{(2r-j)!} B_{n,r}((t-x)^{2r-j}, x) f^{(2r-j)}(x)$$

$$+ \frac{1}{(2r-1)!} B_{n,r} \left(\int_{x}^{t} (t-u)^{2r-1} f^{(2r)}(u) du, x \right)$$

$$\equiv I_1 + I_2.$$
(2.6)

We estimate I_1 first. By [2] (see p. 134 (9.5.3)) and the inequality (2.1), for $x \in E_n$ one has

$$\begin{split} |B_{n,r}((t-x)^{2r-j},x) \ f^{(2r-j)}(x)| \\ & \leq C \, \frac{\phi^{2r(1-\lambda)}(x)}{n^r} \, |\phi^{2r\lambda-2j}(x) \ f^{(2r-j)}(x)| \\ & \leq C \, \frac{\phi^{2r(1-\lambda)}(x)}{n^r} \, (\|f\| + \|\phi^{2r\lambda}f^{(2r)}\|). \end{split}$$

Hence

$$|I_1| \leqslant C \frac{\phi^{2r(1-\lambda)}(x)}{n^r} (\|f\| + \|\phi^{2r\lambda}f^{(2r)}\|). \tag{2.7}$$

Now we estimate I_2 . From $B_n((t-x)^{2r}, x) \leq Cn^{-r}\phi^{2r}(x)$, $(x \in E_n)$ and

$$\frac{|t-u|^{2r-1}}{\phi^{2r\lambda}(u)} \leqslant \frac{|t-x|^{2r-1}}{\phi^{2r\lambda}(x)} \tag{2.8}$$

for u is between x and t (see [2, p. 128], [2, p. 141]), we have

$$\left| B_{n,r} \left(\int_{x}^{t} (t-u)^{2r-1} f^{(2r)}(u) du, x \right) \right|$$

$$\leq \sum_{i=0}^{r-1} |C_{i}(n)| \|\phi^{2r\lambda} f^{(2r)}\| B_{n_{i}} \left(\frac{|t-x|^{2r}}{\phi^{2r\lambda}(x)}, x \right)$$

$$\leq C \frac{\phi^{2r(1-\lambda)}(x)}{n^{r}} \|\phi^{2r\lambda} f^{(2r)}\|. \tag{2.9}$$

So

$$|I_2| \leqslant C \frac{\phi^{2r(1-\lambda)}(x)}{n^r} \|\phi^{2r\lambda} f^{(2r)}\|.$$
 (2.10)

Case 2. $x \in E_n^c = [0, 1/n) \cup (1 - 1/n, 1]$. First we write

$$f(t) = f(x) + (t - x) f'(x) + \dots + \frac{1}{r!} f^{(r)}(x) (t - x)^{r}$$
$$+ \frac{1}{r!} \int_{-r}^{t} (t - u)^{r} f^{(r+1)}(u) du.$$

From the inequality (2.8) and Lemma 2.1 we get for $1 - 1/r < \lambda \le 1$

$$\begin{split} |B_{n,\,r}(f,\,x)-f(x)| \\ &\leqslant \phi^{2(r-1)-2r\lambda}(x) \, \|\phi^{2r\lambda-2(r-1)}f^{(r+1)}\| \sum_{i=0}^{r-1} |C_i(n)| \, B_{n_i}(|t-x|^{r+1},\,x) \\ &\leqslant C\phi^{2r(1-\lambda)-2}(x) (\|f\|+\|\phi^{2r\lambda}f^{(2r)}\|) \sum_{i=0}^{r-1} |C_i(n)| \, B_{n_i}(|t-x|^{r+1},\,x). \end{split}$$

By [2, (9.5.10)], for $x \in E_n^c$, we have $B_n(|t-x|^{2r}, x) \le C \frac{\phi^2(x)}{n^{2r-1}}$, therefore

$$B_n(|t-x|^{r+1}, x) \leq (B_n((t-x)^{2r}, x) B_n((t-x)^2, x))^{1/2} \leq C \frac{\phi^2(x)}{n^r}.$$

Hence for $x \in E_n^c$ we have

$$|B_{n,r}(f,x) - f(x)| \le C \frac{\phi^{2r(1-\lambda)}(x)}{n^r} (\|f\| + \|\phi^{2r\lambda}f^{(2r)}\|). \tag{2.11}$$

From (2.6), (2.7), (2.10) and (2.11), (2.4) follows.

When $r = 1, 0 \le \lambda \le 1$,

$$|B_{n}(f,x) - f(x)| = \left| B_{n} \left(\int_{x}^{t} (t-u) f''(u) du, x \right) \right|$$

$$\leq \|\varphi^{2\lambda} f''\| \varphi^{-2\lambda}(x) B_{n}((t-x)^{2}, x) = \frac{\varphi^{2(1-\lambda)}(x)}{n} \|\varphi^{2\lambda} f''\|.$$

Lemma 2.2 is proved.

Theorem 2. For $f \in C[0, 1]$, $1 - 1/r < \lambda \le 1 (r \ge 2)$, or $0 \le \lambda \le 1$ (r = 1) then

$$|B_{n,r}(f,x) - f(x)| \le C\left(\frac{\phi^{2r(1-\lambda)}(x)}{n^r} \|f\| + \omega_{\phi^{\lambda}}^{2r}\left(f, \frac{\phi^{1-\lambda}(x)}{\sqrt{n}}\right)\right). \tag{2.12}$$

Proof. By (1.6), we may choose $g_n \equiv g_{n,x,\lambda}$ for a fixed x and λ such that

$$||f - g_n|| + (n^{-1/2}\phi^{1-\lambda}(x))^{2r} ||\phi^{2r\lambda}g_n^{(2r)}|| \le C\omega_{\phi^{\lambda}}^{2r}(f, n^{-1/2}\phi^{1-\lambda}(x)).$$
 (2.13)

From the definition of the $B_{n,r}$ and Lemma 2.2, we have

$$\begin{split} |B_{n,r}(f,x) - f(x)| & \leq C \, \|f - g_n\| + |B_{n,r}(g_n,x) - g_n(x)| \\ & \leq C \, \|f - g_n\| + \frac{\phi^{2r(1-\lambda)}(x)}{n^r} \, \|g_n\| + \omega_{\phi^{\lambda}}^{2r} \left(f, \frac{\phi^{1-\lambda}(x)}{\sqrt{n}}\right) \right) \\ & \leq C \left(\frac{\phi^{2r(1-\lambda)}(x)}{n^r} \, \|f\| + \omega_{\phi^{\lambda}}^{2r} \left(f, \frac{\phi^{1-\lambda}(x)}{\sqrt{n}}\right)\right). \end{split}$$

Remark 2. [2, (9.3.1)] is the special case of (2.12) for $\lambda = 1$.

Remark 3. For $0 \le \lambda < 1 - 1/r$, (2.12) is not true.

For $f(x) = x^{r+1}$, let x = 1/n. Then

$$\omega_{\phi^{\lambda}}^{2r}\left(f,\frac{\phi^{1-\lambda}(x)}{\sqrt{n}}\right) + \frac{\phi^{2r(1-\lambda)}(x)}{n^r} \|f\| \sim \left(\frac{1}{n}\right)^{r(2-\lambda)}.$$

In the case of r = 2j (j = 1, 2, ...), using [2, (9.5.11)], we have

$$\begin{split} B_{n,\,r}(f,\,x) - f(x) &= B_{n,\,r}((t-x)^{r+1},\,x) \\ &= \sum_{m=0}^{j-1} \, \frac{\phi^{2j-2m}(x)}{n^{j+m+1}} \, P_m(x) \sim \left(\frac{1}{n}\right)^{2j+1}. \end{split}$$

In the case of r = 2j - 1, using [2, (9.5.10)], similarly we have

$$B_{n,r}(f,x) - f(x) \sim \left(\frac{1}{n}\right)^{2j}$$
.

So for $0 \le \lambda < 1 - 1/r$, (2.12) is not valid and in (1.8) the relation " \Leftarrow " is not true.

3. DIRECT THEOREM WHEN $\lambda = 1 - 1/r$

Lemma 3.1. Let
$$0 < \alpha < 2r$$
, If $\omega_{\phi^{\lambda}}^{2r}(f, t) = O(t^{\alpha})$, $\lambda = 1 - 1/r$, then
$$\omega^{r+1}(f, t) = O(t^{\alpha(1-\lambda/2)}), \tag{3.1}$$

where $\omega^{r+1}(f, t)$ is the classical modulus of smoothness.

Proof. By the following relation (see (3.1.5) of [2])

$$\omega^r(f, t^{1/(1-\lambda/2)}) \leq M\omega^r_{\phi^{\lambda}}(f, t),$$

we can deduce

$$\omega^{2r}(f, t) = \omega^{2r}(f, (t^{1-\lambda/2})^{1/(1-\lambda/2)}) \leqslant M\omega_{\phi^{\lambda}}^{2r}(f, t^{1-\lambda/2}) \leqslant Ct^{\alpha(1-\lambda/2)}.$$

And because of $0 < \alpha < 2r$, $0 < \alpha(1 - \lambda/2) < r + 1$, then using above inequality and the following relation (see (4.3.1) of [2])

$$\omega^{r}(f,t) \leqslant Ct^{r} \left\{ \int_{t}^{c} \frac{\omega^{r+1}(f,u)}{u^{r+1}} du + ||f|| \right\},$$

where c is a positive constant, we can obtain

$$\omega^{r+1}(f, t) \leqslant Ct^{\alpha(1-\lambda/2)}$$
.

Lemma 3.2. For $f(x) \in C[0, 1]$, $f^{(2r-1)}(x) \in A.C.loc$, $r \ge 2$, when $x \in E_n$, $\lambda = 1 - 1/r$, we have

$$|B_{n,r}(f,x) - f(x)| \leq C\omega^{r+1} (f, (n^{-r}\phi^{2r(1-\lambda)}(x))^{1/(r+1)})$$

+ $Cn^{-r}\phi^{2r(1-\lambda)}(x) (||f|| + ||\phi^{2r\lambda}f^{(2r)}||).$ (3.2)

Proof. Let

$$T_{n,r+1}(f,x) = \frac{-1}{(r+1)!} \left(\operatorname{Sgn} R_{n,r+1}(x) \right) \vec{\Delta}_{|R_{n,r+1}(x)|^{1/(r+1)}}^{r+1} f(x),$$

where $R_{n,r+1}(x) = B_{n,r}((t-x)^{r+1}, x)$, $\vec{\Delta}_t^1 f(x) \equiv f(x+t) - f(x)$, $\vec{\Delta}_t^k f(x) \equiv \vec{\Delta}(\vec{\Delta}_t^{k-1} f(x))$. By simple calculation we know

$$T_{n,\,r+1}((t-x)^j,\,x) = \begin{cases} 0, & j < r+1, \\ -\,R_{n,\,r+1}(x), & j = r+1, \\ c_j\,|R_{n,\,r+1}(x)|^{j/(r+1)}\,(\operatorname{Sgn}\,R_{n,\,r+1}(x)), & j > r+1, \end{cases}$$

where c_j is a constant that depends on j but not on n and x.

On the other hand, when $x \in E_n$, we have

$$|R_{n,r+1}(x)| \le Cn^{-r}\phi^2(x) = Cn^{-r}\phi^{2r(1-\lambda)}(x),$$

$$|T_{n,r+1}(f,x)| \le C\omega^{r+1}(f,(n^{-r}\phi^{2r(1-\lambda)}(x))^{1/(r+1)}),$$

and

$$|T_{n,r+1}((t-x)^{j},x)| = |c_{j}| \cdot |R_{n,r+1}(x)|^{j/(r+1)} \leqslant C(n^{-r}\phi^{2}(x))^{j/(r+1)}$$

$$\leqslant Cn^{-r}\phi^{2(j-r)}(x) n^{r(1-j/(r+1))}\phi^{2r(1-j/(r+1))}(x)$$

$$\leqslant Cn^{-r}\phi^{2(j-r)}(x), \qquad (j>r+1). \tag{3.3}$$

Now we define a new operator $A_n(f, x) = T_{n, r+1}(f, x) + B_{n, r}(f, x)$, then

$$A_n((t-x)^j, x) = 0,$$
 $j = 1, 2, ..., r, r + 1.$

Similar to Lemma 2.2 we write that

$$\begin{split} |A_n(f,x)-f(x)| &\leqslant \left| \sum_{j=1}^{r-2} \frac{1}{(2r-j)!} \, B_{n,\,r}((t-x)^{2r-j},x) \, f^{(2r-j)}(x) \right| \\ &+ \left| \frac{1}{(2r-1)!} \, B_{n,\,r} \left(\int_x^t (t-u)^{2r-1} \, f^{(2r)}(u) \, du, x \right) \right| \\ &+ \left| \sum_{j=1}^{r-2} \frac{1}{(2r-j)!} \, T_{n,\,r+1}((t-x)^{2r-j},x) \, f^{(2r-j)}(x) \right| \\ &+ \left| \frac{1}{(2r-1)!} \, T_{n,\,r+1} \left(\int_x^t (t-u)^{2r-1} \, f^{(2r)}(u) \, du, x \right) \right| \\ &\equiv J_1 + J_2 + J_3 + J_4, \end{split}$$

(when r = 2, $J_1 = 0$, $J_3 = 0$).

By the procedure of the proof of Lemma 2.2 we know that

$$J_1 + J_2 \le Cn^{-r}\phi^{2r(1-\lambda)}(x)(\|f\| + \|\phi^{2r\lambda}f^{(2r)}\|).$$

Using (3.3), on a similar plan of (2.7) we can get

$$J_3 \leq C n^{-r} \phi^{2r(1-\lambda)}(x) (\|f\| + \|\phi^{2r\lambda} f^{(2r)}\|).$$

Now we estimate J_4 . We know

$$\begin{split} |T_{n,\,r+1}(f,\,x)| &= \frac{-1}{(r+1)!} \, |\vec{\mathcal{A}}_{\,|R_{n,\,r+1}(x)|^{1/(r+1)}}^{\,r+1} f(x)| \\ &= \frac{-1}{(r+1)!} \, \bigg| \sum_{m=0}^{r+1} \, (-1)^m \binom{r+1}{m} \\ &\times f(x+(r+1-m) \, |R_{n,\,r+1}(x)|^{1/(r+1)}) \bigg|, \end{split}$$

so

$$\begin{split} J_4 \leqslant & \sum_{m=0}^{r+1} \binom{r+1}{m} \int_{x}^{x+(r+1-m)} \frac{|R_{n,\,r+1}(x)|^{1/(r+1)}}{x} \\ & \times (x+(r+1-m) \; |R_{n,\,r+1}(x)|^{1/(r+1)} - u)^{2r-1} \; |f^{2r}(u)| \; du. \end{split}$$

Then similar to the proof (2.9), we can deduce by (2.8) and (3.3)

$$J_4 \leqslant C n^{-r} \phi^{2r(1-\lambda)}(x) (||f|| + ||\phi^{2r\lambda} f^{(2r)}||).$$

Therefore

$$|A_n(f,x)-f(x)| \le Cn^{-r}\phi^{2r(1-\lambda)}(x)(\|f\|+\|\phi^{2r\lambda}f^{(2r)}\|).$$

Thus we obtain

$$\begin{split} |B_{n,\,r}(f,\,x)-f(x)| &\leqslant |A_n(f,\,x)-f(x)| + |T_{n,\,r+1}(f,\,x)| \\ &\leqslant C\omega^{r+1}(f,\,(n^{-r}\phi^2(x))^{1/(r+1)}) \\ &\qquad + Cn^{-r}\phi^{2r(1-\lambda)}(x)(\|f\|+\|\phi^{2r\lambda}f^{(2r)}\|). \end{split}$$

Lemma 3.2 has been proved.

Similar to the proof of Theorem 2, we can obtain the following theorem.

THEOREM 3. Let $f \in C[0, 1]$, when $x \in E_n$, $\lambda = 1 - 1/r$, we have

$$|B_{n,r}(f,x) - f(x)| \le C\omega^{r+1}(f, (n^{-r}\phi^{2r(1-\lambda)}(x))^{1/(r+1)}) + C\left(\frac{\phi^{2r(1-\lambda)}(x)}{n^r} \|f\| + \omega_{\phi^{\lambda}}^{2r}(f, n^{-1/2}\phi^{1-\lambda}(x))\right).$$
(3.4)

To discuss the case of $x \in E_n^c$, we define for h > 0 the Steklov-type averages

$$f_h(x) = \left(\frac{r+1}{h}\right)^{r+1} \int_0^{h/r+1} \cdots \int_0^{h/r+1} \times \left\{\sum_{k=1}^{r+1} \binom{r+1}{k} (-1)^{k+1} f(x+k(u_1+\cdots+u_{r+1}))\right\} du_1 \cdots du_{r+1}.$$

We know $f_h(x)$ has r+1 continuous derivatives. And when $[x, x+(r+1)h] \subset [0,1]$, by calculation we have

$$|f(x) - f_h(x)| \le C\omega^{r+1}(f, h),$$

 $|f_h^{(r+1)}(x)| \le Ch^{-(r+1)}\omega^{r+1}(f, h).$

Then we choose a function $\psi \in C^{\infty}$ such that $\psi(x) = 1$ on [0, 1/3], $\psi(x) = 0$ on [2/3, 1] and $\psi(x)$ is decreasing. Let $F_h(x) = f_h(x) \psi(x) + f_{-h}(1 - \psi(x))$, where f_{-h} is the same as f_h but using -h instead of h. Using the standard technique of [3, p. 106], we can deduce for $x \in [0, 1]$

$$|f(x) - F_h(x)| \le C\omega^{r+1}(f, h), \tag{3.5}$$

$$|F_h^{(r+1)}(x)| \le Ch^{-(r+1)}\omega^{r+1}(f,h).$$
 (3.6)

Therefore similar to the case 2 of Lemma 2.2 we also have for $x \in E_n^c$ by (3.6)

$$|B_{n,r}(F_h, x) - F_h(x)| = \frac{1}{r!} \left| B_{n,r} \left(\int_x^t (t - u)^r F_h^{(r+1)}(u) \, du, x \right) \right|$$

$$\leq Ch^{-(r+1)} \omega^{r+1}(f, h) \sum_{i=0}^{r-1} |C_i(n)| B_{n_i}(|t - x|^{r+1}, x)$$

$$\leq Ch^{-(r+1)} \omega^{r+1}(f, h) n^{-r} \varphi^2(x). \tag{3.7}$$

Now we give the direct theorem:

Theorem 4. Let $f \in C[0, 1]$, when $x \in [0, 1]$, $\lambda = 1 - 1/r$, $0 < \alpha < 2r$, if $\omega_{\phi}^{2r}(f, t) = O(t^{\alpha})$, then we have

$$|B_{n,r}(f,x) - f(x)| = O((n^{-1/2}\phi^{1-\lambda}(x))^{\alpha}) = O(n^{-\alpha/2}\phi^{\alpha/r}(x)).$$
 (3.8)

Proof. We will prove (3.8) by two cases.

Case 1. When $x \in E_n$, using Lemma 3.1 and Theorem 3 we obtain

$$\begin{split} |B_{n,r}(f,x)-f(x)| \\ &\leqslant C\omega^{r+1}(f,(n^{-r}\phi^2(x))^{1/(r+1)}) + C\omega_{\phi^{\lambda}}^{2r}(f,n^{-1/2}\phi^{1-\lambda}(x)) \\ &\leqslant C(n^{-r}\phi^2(x))^{(\alpha/(r+1))(1-\lambda/2)} + C(n^{-1/2}\phi^{1-\lambda}(x))^{\alpha} \\ &\leqslant C(n^{-1/2}\phi^{1-\lambda}(x))^{\alpha}. \end{split}$$

Case 2. When $x \in E_n^c$, using (3.5), (3.7) and Lemma 3.1, and choosing $h = (n^{-r}\phi^2(x))^{1/r+1}$ we have

$$\begin{split} |B_{n,\,r}(f,x)-f(x)| \\ & \leq |B_{n,\,r}(f-F_h,x)| + |f(x)-F_h(x)| + |B_{n,\,r}(F_h,x)-F_h(x)| \\ & \leq C\omega^{r+1}(f,h) + Ch^{-(r+1)}\omega^{r+1}(f,h)\,n^{-r}\phi^2(x) \\ & \leq Ch^{\alpha(1-\lambda/2)} + Ch^{-(r+1)}n^{-r}\phi^2(x)\,h^{\alpha(1-\lambda/2)} \\ & \leq C(n^{-1/2}\phi^{1-\lambda}(x))^{\alpha}. \end{split}$$

Theorem 4 has been proved.

Remark 4. In fact by this method we can also deal with the case of $1-1/r < \lambda \le 1$ in Theorem 1. But we cannot obtain Theorem 2 (a better direct theorem).

4. INVERSE RESULTS

Theorem 5. For $f \in C[0, 1]$, $r \in \mathbb{N}$, $0 < \alpha < 2r$, $0 \le \lambda \le 1$, if

$$|B_{n,r}(f,x) - f(x)| \le C((n^{-1/2}\phi^{1-\lambda}(x))^{\alpha}),$$
 (4.1)

then

$$\omega_{\phi^{\lambda}}^{2r}(f,t) = O(t^{\alpha}). \tag{4.2}$$

Proof. From the procedure of proof in [4, Theorem 2], we can deduce that for $0 < \alpha < 2r$

$$|B_{n,r}(f,x) - f(x)| = O((n^{-1/2}\delta_n^{1-\lambda}(x))^{\alpha}) \Rightarrow \omega_{\phi^{\lambda}}^{2r}(f,t) = O(t^{\alpha}). \tag{4.3}$$

Since (4.1) implies the left of (4.3), (4.2) follows.

Remark 5. Obviously, by Theorems 2, 4 and 5, noting Remark 3 we know that Theorem 1 is true.

120 GUO ET AL.

ACKNOWLEDGMENTS

The authors express their sincere thanks to Professor Z. Ditzian. He pointed out a mistake in our manuscript and gave his valuable suggestions, which has definitely improved the final version of this paper. We also thank the referee for helpful suggestions.

REFERENCES

- Z. Ditzian, A global inverse theorem for combinations of Bernstein polynomials, J. Approx. Theory 26 (1979), 277–292.
- Z. Ditzian and V. Totik, "Moduli of Smoothness," Springer-Verlag, Berlin/New York, 1987.
- 3. Z. Ditzian, Rate of Approximation of Linear Processes, Acta Sci. Math. 48 (1985), 103-128.
- S. Guo, S. Yue, C. Li, G. Yang, and Y. Sun, A pointwise approximation theorem for linear combinations of Bernstein polynomials, Abstract Appl. Anal. 1 (1996), 359–368.